Foundations of Description Logics

Arina Britz

abritz@sun.ac.za

ISAO, Cape Town 2018
Origins

- Logic in the East – Buddhist and Islamic traditions
- Logic in the West – Aristotle (300s BC)
- Logicism – Boole, Frege (late 1800s), Russell (early 1900s)
- Symbolic logic – Gödel and Tarski (1930s)
- Computation and IT – Von Neumann and Turing (1940s)
- Classical logic – Idealist modelling and reasoning
- Non-classical logics
- Logic engineering

Among all the liberal arts, the first is logic – John of Salisbury
Syllogisms

- Logical argument forms

- Statements made about predicates / subjects / categories:
 - All A are B
 - No A are B
 - Some A are B
 - Not all A are B
Syllogisms

Logical argument forms

Statements made about predicates / subjects / categories:

- All A are B
- No A are B
- Some A are B
- Not all A are B

Let’s write \neg whenever we mean ‘not’:

- All A are B
- All A are $\neg B$
- Some A are B
- Some A are $\neg B$
Syllogisms

- Logical argument forms
- Statements made about predicates / subjects / categories:
 - All A are B
 - No A are B
 - Some A are B
 - Not all A are B
- Let’s write \neg whenever we mean ‘not’:
 - All A are B
 - All A are $\neg B$
 - Some A are B
 - Some A are $\neg B$
- Let’s write \subseteq for ‘all ... are’, and $\not\subseteq$ instead of ‘not all ... are’:
 - $A \subseteq B$
 - $A \subseteq \neg B$
 - $A \not\subseteq B$
 - $A \not\subseteq B$
From traditional to modern logic

- Predicates, argument forms, limited negation, concept inclusion, assertions ✔
- Fully symbolic language with compositional semantics ✗
From traditional to modern logic

- Predicates, argument forms, limited negation, concept inclusion, assertions ✓
- Fully symbolic language with compositional semantics ✗
- Boolean connectives:
 - AND: \(\land \)
 - OR: \(\lor \)
 - NOT: \(\neg \)
 - ONLY IF: \(\rightarrow \)
 - ... BUT, UNLESS, IF AND ONLY IF, ...
From traditional to modern logic

- Predicates, argument forms, limited negation, concept inclusion, assertions ✔
- Fully symbolic language with compositional semantics ✗
- Boolean connectives:
 - AND: \(\land \)
 - OR: \(\lor \)
 - NOT: \(\neg \)
 - ONLY IF: \(\rightarrow \)
 - ... BUT, UNLESS, IF AND ONLY IF, ...
- Objects:
 - Named objects (constant symbols): \(a, b, c, \ldots \)
 - Placeholders for unnamed objects (variables): \(x, y, z, \ldots \)
- Predicates: \(A, B, \ldots \) (unary, binary, ..., \(n \)-ary)
From traditional to modern logic

- Predicates, argument forms, limited negation, concept inclusion, assertions ✓
- Fully symbolic language with compositional semantics X
- Boolean connectives:
 - AND: \(\land \)
 - OR: \(\lor \)
 - NOT: \(\neg \)
 - ONLY IF: \(\rightarrow \)
 - ... BUT, UNLESS, IF AND ONLY IF, ...
- Objects:
 - Named objects (constant symbols): \(a, b, c, \ldots \)
 - Placeholders for unnamed objects (variables): \(x, y, z, \ldots \)
- Predicates: \(A, B, \ldots \) (unary, binary, ..., \(n \)-ary)
- Quantifiers:
 - ALL: \(\forall \)
 - SOME: \(\exists \)
Translating sentences to predicate logic

Simple statements:

- All A are B: $\forall x (A(x) \rightarrow B(x))$
- No A are B: $\neg \exists x (A(x) \land B(x))$
- Some A are B: $\exists x (A(x) \land B(x))$
- Not all A are B: $\neg \forall x (A(x) \rightarrow B(x))$
Translating sentences to predicate logic

- **Simple statements:**
 - All A are B: $\forall x (A(x) \rightarrow B(x))$
 - No A are B: $\neg \exists x (A(x) \land B(x))$
 - Some A are B: $\exists x (A(x) \land B(x))$
 - Not all A are B: $\neg \forall x (A(x) \rightarrow B(x))$

- **Sentences with multiple quantifiers and binary predicates:**
 - Every boy loves a girl:
 $$\forall x (B(x) \rightarrow \exists y (G(y) \land L(x, y)))$$
 - No girl who loves a boy is not loved by some boy:
 $$\neg \exists x (G(x) \land \exists y (B(y) \land L(x, y)) \land \neg \exists z (B(z) \land L(z, x)))$$
 - There is a cycle of n alternating boys and girls holding hands.
Building complex formulas

Definition (The language of predicate logic1)

- An **atomic formula** is an \(n \)-ary predicate symbol \(A \) followed by \(n \) arguments, which can be constants or variables.
- An atomic formula is a formula.
- If \(\phi \) and \(\psi \) are formulas, then so are: \(\neg \phi \), \(\phi \land \psi \), \(\phi \lor \psi \), and \(\phi \rightarrow \psi \).
- If \(\phi \) is a formula and \(x \) is a variable, then \(\forall x(\phi) \) and \(\exists x(\phi) \) are formulas.
- A **sentence** is a formula in which there are no free variables.

1without function symbols

Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt – Wittgenstein
Exercise

Which of the following are predicate formulas?

- \(\neg A(c) \)
- \(\forall x (P(x) \lor R(x, y, z)) \)
- \(R(x, y) \land R(x, y, z) \)
- \(\exists y \forall x (P(x) \lor Q(x, y)) \)
- \(\exists P(P(x)) \)
- \(\exists x (R(x, A(c)) \rightarrow A(x)) \)

A mind all logic is like a knife all blade; it makes the hand bleed that uses it – Rabindranath Tagore
Exercise

Which of the following are predicate formulas?

- $\neg A(c)$ ✓
- $\forall x(P(x) \lor R(x, y, z))$
- $R(x, y) \land R(x, y, z)$
- $\exists y \forall x(P(x) \lor Q(x, y))$
- $\exists P(P(x))$
- $\exists x(R(x, A(c)) \rightarrow A(x))$

A mind all logic is like a knife all blade; it makes the hand bleed that uses it – Rabindranath Tagore
Which of the following are predicate formulas?

- $\neg A(c)$ ✔
- $\forall x(P(x) \lor R(x, y, z))$ ✔
- $R(x, y) \land R(x, y, z)$
- $\exists y \forall x(P(x) \lor Q(x, y))$
- $\exists P(P(x))$
- $\exists x(R(x, A(c)) \rightarrow A(x))$

A mind all logic is like a knife all blade; it makes the hand bleed that uses it – Rabindranath Tagore
Exercise

Which of the following are predicate formulas?

- $\neg A(c)$ ✓
- $\forall x(P(x) \lor R(x, y, z))$ ✓
- $R(x, y) \land R(x, y, z)$ ✗
- $\exists y \forall x(P(x) \lor Q(x, y))$
- $\exists P(P(x))$
- $\exists x(R(x, A(c)) \rightarrow A(x))$

A mind all logic is like a knife all blade; it makes the hand bleed that uses it – Rabindranath Tagore
Exercise

Which of the following are predicate formulas?

- $\neg A(c)$ ✓
- $\forall x(P(x) \lor R(x, y, z))$ ✓
- $R(x, y) \land R(x, y, z)$ ✗
- $\exists y \forall x(P(x) \lor Q(x, y))$ ✓
- $\exists P(P(x))$
- $\exists x(R(x, A(c)) \rightarrow A(x))$

A mind all logic is like a knife all blade; it makes the hand bleed that uses it – Rabindranath Tagore
Exercise

Which of the following are predicate formulas?

- $\neg A(c)$ ✓
- $\forall x (P(x) \lor R(x, y, z))$ ✓
- $R(x, y) \land R(x, y, z)$ x
- $\exists y \forall x (P(x) \lor Q(x, y))$ ✓
- $\exists P(P(x))$ x
- $\exists x (R(x, A(c)) \rightarrow A(x))$

A mind all logic is like a knife all blade; it makes the hand bleed that uses it – Rabindranath Tagore
Which of the following are predicate formulas?

- $\neg A(c)$ ✓
- $\forall x(P(x) \lor R(x, y, z))$ ✓
- $R(x, y) \land R(x, y, z)$ ✗
- $\exists y \forall x(P(x) \lor Q(x, y))$ ✓
- $\exists P(P(x))$ ✗
- $\exists x(R(x, A(c)) \rightarrow A(x))$ ✗

A mind all logic is like a knife all blade; it makes the hand bleed that uses it – Rabindranath Tagore
Exercise

Translate to predicate logic:

- Every small dog travelling with its owner is happy.
- Tintin owns a small, happy dog.
- Milou is a small dog who travels with Tintin.

Does it follow that Milou is happy?
Exercise

Translate to predicate logic:

- Every small dog travelling with its owner is happy.
- Tintin owns a small, happy dog.
- Milou is a small dog who travels with Tintin.

Does it follow that Milou is happy?

- $\forall x \forall y ((\text{Small}(x) \land \text{Dog}(x) \land \text{TravelsWith}(x, y) \land \text{Owns}(y, x)) \rightarrow \text{Happy}(x))$
Exercise

Translate to predicate logic:

- Every small dog travelling with its owner is happy.
- Tintin owns a small, happy dog.
- Milou is a small dog who travels with Tintin.

Does it follow that Milou is happy?

- $\forall x \forall y ((\text{Small}(x) \land \text{Dog}(x) \land \text{TravelsWith}(x, y) \land \text{Owns}(y, x)) \rightarrow \text{Happy}(x))$
- $\exists x (\text{Small}(x) \land \text{Dog}(x) \land \text{Happy}(x) \land \text{Owns}(\text{tintin}, x))$
Exercise

Translate to predicate logic:

- Every small dog travelling with its owner is happy.
- Tintin owns a small, happy dog.
- Milou is a small dog who travels with Tintin.

Does it follow that Milou is happy?

- $\forall x \forall y ((\text{Small}(x) \land \text{Dog}(x) \land \text{TravelsWith}(x, y) \land \text{Owns}(y, x)) \rightarrow \text{Happy}(x))$
- $\exists x (\text{Small}(x) \land \text{Dog}(x) \land \text{Happy}(x) \land \text{Owns}(\text{tintin}, x))$
- $\text{Dog}(\text{milou}) \land \text{Small}(\text{milou}) \land \text{TravelsWith}(\text{milou}, \text{tintin})$
Semantic intuition
A sentence is either true or false in any given interpretation. The truth of a complex sentence in an interpretation is determined only by the truth of its components.

Semantic entailment

Formalisation of valid argument forms

\[\phi_1, \ldots, \phi_k \models \psi: \]
- From premises \(\phi_1, \ldots, \phi_k \) the conclusion \(\psi \) follows.
- In each interpretation where all the premises \(\phi_1, \ldots, \phi_k \) are true, so is the conclusion \(\psi \).
- Every model of \(\phi_1, \ldots, \phi_k \) is a model of \(\psi \).

The sentence ‘snow is white’ is true if, and only if, snow is white – Alfred Tarski.
Validity Problem

- Check if if \(\phi \) is valid, written \(\models \phi \)
- Look for a counterexample
- Predicate logic is semi-decidable – there is no guaranteed method to test validity, if the answer is ‘No’ the method may not terminate
- Predicate logic is axiomatisable
Validity Problem

- Check if \(\phi \) is valid, written \(\models \phi \)
- Look for a counterexample
- Predicate logic is semi-decidable – there is no guaranteed method to test validity, if the answer is ‘No’ the method may not terminate
- Predicate logic is axiomatisable
- Predicate logic has many useful decidable fragments:
 - Monadic predicate logic – adding a single binary predicate makes it undecidable
 - Two-variable fragment
 - Guarded fragment – closed under Boolean composition and guarded quantification

Example

- \(\forall y(G(x, y) \rightarrow C(y)) \)
- \(\exists y(G(x, y) \land C(y)) \)
- \(\forall x(G(x) \rightarrow C(x)) \)
Guarded Fragment

Definition (The guarded fragment GF of predicate logic)

- \(\top\) and \(\bot\) are in GF
- If \(\phi\) is an atomic formula, then \(\phi\) is in GF
- GF is closed under Boolean composition \(\land\), \(\lor\), \(\neg\) and \(\rightarrow\)
- If \(\phi\) is in GF and \(A(\bar{x})\) is an atomic formula for which every free variable of \(\phi\) is among the arguments of \(A\), then \(\forall \bar{y}(A(\bar{x}) \rightarrow \phi)\) and \(\exists \bar{y}(A(\bar{x}) \land \phi)\) are in GF for any sequence \(\bar{y}\) of variables

Example

- \(\forall x \forall y (R(x, y) \rightarrow \neg R(y, x))\) (asymmetry) ✓
- \(\forall x \forall y (MWC(x, y) \rightarrow M(x, y) \land \exists z (C(z, x) \land C(z, y)))\) ×
Translate the following statements to predicate logic:

- Anyone’s aunt is a sister of their parent.
- Jane’s aunts are her parents’ sisters.

Which of these are in the 2-variable fragment of predicate logic?

Which are in the guarded fragment?
Translate the following statements to predicate logic:

Anyone’s aunt is a sister of their parent.
Jane’s aunts are her parents’ sisters.

Which of these are in the 2-variable fragment of predicate logic?
Which are in the guarded fragment?

\[\forall x \forall y (A(x, y) \rightarrow \exists z (S(x, z) \land P(z, y))) \]
Exercise

- Translate the following statements to predicate logic:

 Anyone’s aunt is a sister of their parent.

 Jane’s aunts are her parents’ sisters.

- Which of these are in the 2-variable fragment of predicate logic?
- Which are in the guarded fragment?

\[
\forall x \forall y (A(x, y) \rightarrow \exists z (S(x, z) \land P(z, y)))
\]

\[
\forall x (A(x, jane) \rightarrow \exists z (S(x, z) \land P(z, jane)))
\]
Translate the following statements to predicate logic:

Anyone’s aunt is a sister of their parent.

Jane’s aunts are her parents’ sisters.

Which of these are in the 2-variable fragment of predicate logic?
Which are in the guarded fragment?

\[
\forall x \forall y (A(x, y) \rightarrow \exists z (S(x, z) \land P(z, y)))
\]

\[
\forall x (A(x, jane) \rightarrow \exists z (S(x, z) \land P(z, jane)))
\]

Next up – Choosing a fragment of predicate logic to work with
Description Logics

- Family of knowledge representation languages for authoring ontologies
- Designed to represent knowledge about things, categories of things, and relationships between things and categories
- Foundation for the Web Ontology Language (OWL), built on W3C Resource Description Framework (RDF) standard for objects
- Good tradeoff between expressiveness and complexity of reasoning
- Amenable to implementation
Description Logics are syntactic variants of (usually) decidable fragments of predicate logic:

- Only unary and binary predicates
- All variables are hidden from the syntax
- No free variables
- Restricted use of quantifiers, mostly within GF
- Only universal sentences as terminological axioms
Atomic building blocks:

- Individual names I (objects), e.g. tintin, tibet
- Concept names C (classes), e.g. Dog, Country
- Role names R (relations), e.g. owns, travelsTo
Concept building blocks

- **Atomic building blocks:**
 - Individual names I (objects), e.g. tintin, tibet
 - Concept names C (classes), e.g. Dog, Country
 - Role names R (relations), e.g. owns, travelsTo

- **Boolean constructors:**
 - conjunction: \(\sqcap \) (class intersection)
 - disjunction: \(\sqcup \) (class union)
 - negation: \(\neg \) (class complement)
Concept building blocks

- **Atomic building blocks:**
 - Individual names I (objects), e.g. tintin, tibet
 - Concept names C (classes), e.g. Dog, Country
 - Role names R (relations), e.g. owns, travelsTo

- **Boolean constructors:**
 - conjunction: \(\cap \) (class intersection)
 - disjunction: \(\cup \) (class union)
 - negation: \(\neg \) (class complement)

- **Role restrictions:**
 - existential restriction: \(\exists \) (some)
 - universal restriction: \(\forall \) (only)
Concept building blocks

- **Atomic building blocks:**
 - Individual names I (objects), e.g. tintin, tibet
 - Concept names C (classes), e.g. Dog, Country
 - Role names R (relations), e.g. owns, travelsTo

- **Boolean constructors:**
 - conjunction: \cap (class intersection)
 - disjunction: \sqcup (class union)
 - negation: \neg (class complement)

- **Role restrictions:**
 - existential restriction: \exists (some)
 - universal restriction: \forall (only)

- and more: cardinality constraints, inverse roles, role composition, ...
Building complex concepts

Definition (Concept language of ALC)

- Every concept name $A \in C$ is a concept
- \top and \bot are concepts
- If C and D are concepts, then so are $\neg C$, $C \cap D$, $C \cup D$
- If $r \in R$ and C is a concept, then $\forall r.C$ and $\exists r.C$ are concepts

Which of the following are concepts?

- $\top \cap r.\top$
- $\exists r.\top$
- $C \cup \neg \exists D$
- $\exists r.\forall s.C \cap D$
- $\forall r.(C \cap \neg D)$
Building complex concepts

Definition (Concept language of \(\mathcal{ALC} \))

- Every concept name \(A \in C \) is a concept
- \(\top \) and \(\bot \) are concepts
- If \(C \) and \(D \) are concepts, then so are \(\neg C \), \(C \sqcap D \), \(C \sqcup D \)
- If \(r \in R \) and \(C \) is a concept, then \(\forall r.C \) and \(\exists r.C \) are concepts

Which of the following are concepts?

- \(\top \sqcap r.\top \) \(\times \)
- \(\exists r.\top \)
- \(C \sqcup \neg \neg \exists D \)
- \(\exists r.\forall s.C \sqcap D \)
- \(\forall r.(C \sqcap \neg D) \)
Building complex concepts

Definition (Concept language of \mathcal{ALC})

- Every concept name $A \in C$ is a concept
- \top and \bot are concepts
- If C and D are concepts, then so are $\neg C$, $C \cap D$, $C \cup D$
- If $r \in R$ and C is a concept, then $\forall r.C$ and $\exists r.C$ are concepts

Which of the following are concepts?

- $\top \cap r.\top$ ✗
- $\exists r.\top$ ✓
- $C \cup \neg \exists D$
- $\exists r.\forall s.C \cap D$
- $\forall r.(C \cap \neg D)$
Building complex concepts

Definition (Concept language of \(\mathcal{ALC}\))

- Every concept name \(A \in C\) is a concept
- \(\top\) and \(\bot\) are concepts
- If \(C\) and \(D\) are concepts, then so are \(\neg C\), \(C \sqcap D\), \(C \sqcup D\)
- If \(r \in R\) and \(C\) is a concept, then \(\forall r.C\) and \(\exists r.C\) are concepts

Which of the following are concepts?

- \(\top \sqcap r.\top\) \(\times\)
- \(\exists r.\top\) \(\checkmark\)
- \(C \sqcup \neg \neg \exists D\) \(\times\)
- \(\exists r.\forall s.C \sqcap D\)
- \(\forall r.(C \sqcap \neg D)\)
Building complex concepts

Definition (Concept language of ALC)

- Every concept name $A \in C$ is a concept
- \top and \bot are concepts
- If C and D are concepts, then so are $\neg C$, $C \sqcap D$, $C \sqcup D$
- If $r \in R$ and C is a concept, then $\forall r . C$ and $\exists r . C$ are concepts

Which of the following are concepts?

- $\top \sqcap r . \top$ ✗
- $\exists r . \top$ ✓
- $C \sqcup \neg \exists D$ ✗
- $\exists r . \forall s . C \sqcap D$ ✓
- $\forall r . (C \sqcap \neg D)$
Building complex concepts

Definition (Concept language of ALC)

- Every concept name \(A \in C \) is a concept
- \(\top \) and \(\bot \) are concepts
- If \(C \) and \(D \) are concepts, then so are \(\neg C \), \(C \sqcap D \), \(C \sqcup D \)
- If \(r \in R \) and \(C \) is a concept, then \(\forall r.C \) and \(\exists r.C \) are concepts

Which of the following are concepts?

- \(\top \sqcap r.\top \) \(\times \)
- \(\exists r.\top \) \(\checkmark \)
- \(C \sqcup \neg\exists D \) \(\times \)
- \(\exists r.\forall s.C \sqcap D \) \(\checkmark \)
- \(\forall r.(C \sqcap \neg D) \) \(\checkmark \)
An \mathcal{ALC} interpretation \mathcal{I} consists of a nonempty domain Δ, and an interpretation function $\cdot^\mathcal{I}$ such that:

- for each individual name $a \in I$, $a^\mathcal{I} \in \Delta$
- for each concept name $A \in C$, $A^\mathcal{I} \subseteq \Delta$
- for each role name $r \in R$, $r^\mathcal{I} \subseteq \Delta \times \Delta$
Extend interpretations to complex concept expressions:

- \(\top^\mathcal{I} = \Delta \)
- \(\bot^\mathcal{I} = \emptyset \)
- \((\neg C)^\mathcal{I} = \Delta \setminus C^\mathcal{I} \)
- \((C \cap D)^\mathcal{I} = C^\mathcal{I} \cap D^\mathcal{I} \)
- \((C \cup D)^\mathcal{I} = C^\mathcal{I} \cup D^\mathcal{I} \)
- \((\exists r. C)^\mathcal{I} = \{x \in \Delta \mid x \text{ is related by } r^\mathcal{I} \text{ to some element in } C^\mathcal{I}\} = \{x \in \Delta \mid \exists y (r^\mathcal{I}(x, y) \land C^\mathcal{I}(y))\} \)
- \((\forall r. C)^\mathcal{I} = \{x \in \Delta \mid x \text{ is related by } r^\mathcal{I} \text{ only to elements in } C^\mathcal{I}\} = \{x \in \Delta \mid \forall y (r^\mathcal{I}(x, y) \rightarrow C^\mathcal{I}(y))\} \)
Concept language semantics

Arbitrary concept
- A class in the domain
- $C^I \subseteq \Delta^I$
Concept language semantics

Arbitrary concept
- A class in the domain
- $C^\mathcal{I} \subseteq \Delta^\mathcal{I}$

Concept negation
- The complement of a class
- $(\neg C)^\mathcal{I} = \Delta^\mathcal{I} \setminus C^\mathcal{I}$
Concept language semantics

Concept conjunction

- The **intersection** of two classes
- \((C \cap D)^\mathcal{I} = C^\mathcal{I} \cap D^\mathcal{I}\)
Concept language semantics

Concept conjunction
- The intersection of two classes
- \((C \cap D)^I = C^I \cap D^I\)

Concept disjunction
- The union of two classes
- \((C \cup D)^I = C^I \cup D^I\)
Concept language semantics

Existential restriction

$$(\exists r. C)^I = \{ x \in \Delta \mid \exists y (r^I(x, y) \land C^I(y)) \}$$
Concept language semantics

Existential restriction

$$(\exists r. C)^{\mathcal{I}} = \{ x \in \Delta \mid \exists y (r^\mathcal{I}(x, y) \land C^\mathcal{I}(y)) \}$$

Universal restriction

$$(\forall r. C)^{\mathcal{I}} = \{ x \in \Delta \mid \forall y (r^\mathcal{I}(x, y) \rightarrow C^\mathcal{I}(y)) \}$$
Example

\[(\text{Canine } \cap \text{ Male})^\mathcal{I} = \{\ldots\}\]

\[(\exists \text{owns}.(\text{Canine } \cap \text{ Male}))^\mathcal{I} = \{\ldots\}\]

\[(\neg \text{Canine } \cap \forall \text{owns}.\neg(\text{Male } \cap \text{ Canine}))^\mathcal{I} = \{\ldots\}\]
Mapping to predicate logic

- Same notion of domain of interpretation
- Individual names mapped to constant symbols
- Concept names mapped to unary atomic formulas
- Role names mapped to binary atomic formulas
- Complex concepts mapped to predicate formulas with a single free variable
Mapping to predicate logic

- Same notion of domain of interpretation
- Individual names mapped to constant symbols
- Concept names mapped to unary atomic formulas
- Role names mapped to binary atomic formulas
- Complex concepts mapped to predicate formulas with a single free variable

Some unanswered questions – how to

- relate or compare complex concepts?
- bind the hidden free variable in complex concepts?
- assert knowledge about individuals?
- determine the veracity of statements?
Making statements

- **Terminological axioms (TBox axioms):**
 - All owners of a male dog are male
 - In predicate logic:

\[
\forall x (\exists y (\text{Owns}(x, y) \land \text{Male}(y) \land \text{Dog}(y)) \rightarrow \text{Male}(x))
\]

- This is a **sentence** in predicate logic, so no free variables!
Making statements

- **Terminological axioms (TBox axioms):**
 - All owners of a male dog are male
 - In predicate logic:
 \[\forall x (\exists y (\text{Owns}(x, y) \land \text{Male}(y) \land \text{Dog}(y)) \rightarrow \text{Male}(x)) \]
 - This is a sentence in predicate logic, so no free variables!

- **Assertions (ABox assertions):**
 - assert categories to which individuals or pairs of individuals belong
 - Nemo is a dog
 - Emo owns Nemo
 - In predicate logic:
 \[\text{Dog}(\text{nemo}) \land \text{Owns}(\text{emo}, \text{nemo}) \]
Axioms

\[C \sqsubseteq D \]

- Concept inclusion / subsumption:
 - \(C \) is subsumed by \(D \)
 - \(C \) is more specific than \(D \)
 - \(D \) generalises \(C \)
 - All \(C \) are \(D \)
 - Every \(C \) is a \(D \)

- Formalises the syllogism “All ... are ...”

- Predicate logic translation:
 - Binds the free variable in \(C \) and in \(D \)
 - \(\forall x (C(x) \rightarrow D(x)) \)

Example

\(\exists \text{owns}.(\text{Dog} \sqcap \text{Male}) \sqsubseteq \text{Male} \)
Assertions

\[a : C; \quad (a, b) : r \]

- **Concept and role assertions:**
 - \(a \) is an instance of \(C \)
 - \(a \) and \(b \) are related by \(r \)

- **Predicate logic translation:**
 - No free variables
 - \(C(a) \)
 - \(r(a, b) \)

Example

nemo : Dog
nemo : \(\neg \)Male
(emo, nemo) : owns
Truth in an interpretation

Recall – An interpretation \mathcal{I} is a tuple $\langle \Delta, \cdot^\mathcal{I} \rangle$ with domain Δ of objects and interpretation function $\cdot^\mathcal{I}$ such that:

- for each individual name $a \in I$, $a^\mathcal{I} \in \Delta$
- for each concept name $A \in C$, $A^\mathcal{I} \subseteq \Delta$
- for each role name $r \in R$, $r^\mathcal{I} \subseteq \Delta \times \Delta$
Truth in an interpretation

Recall – An interpretation \mathcal{I} is a tuple $\langle \Delta, \cdot \mathcal{I} \rangle$ with domain Δ of objects and interpretation function $\cdot \mathcal{I}$ such that:

- for each individual name $a \in \mathcal{I}$, $a^\mathcal{I} \in \Delta$
- for each concept name $A \in C$, $A^\mathcal{I} \subseteq \Delta$
- for each role name $r \in R$, $r^\mathcal{I} \subseteq \Delta \times \Delta$

Definition (Satisfaction)

- $\mathcal{I} \models C \subseteq D$ if $C^\mathcal{I} \subseteq D^\mathcal{I}$ (read: \mathcal{I} satisfies $C \subseteq D$)
- $\mathcal{I} \models a : C$ if $a^\mathcal{I} \in C^\mathcal{I}$
- $\mathcal{I} \models (a, b) : r$ if $(a^\mathcal{I}, b^\mathcal{I}) \in r^\mathcal{I}$
\[\mathcal{I} \models C \subseteq D \text{ if } C^\mathcal{I} \subseteq D^\mathcal{I} \]
Truth in an interpretation

- $\mathcal{I} \models C \subseteq D$ if $C^\mathcal{I} \subseteq D^\mathcal{I}$

- $\mathcal{I} \models a : C$ if $a^\mathcal{I} \in C^\mathcal{I}$
Truth in an interpretation

- $\mathcal{I} \models C \subseteq D$ if $C^\mathcal{I} \subseteq D^\mathcal{I}$

- $\mathcal{I} \models a : C$ if $a^\mathcal{I} \in C^\mathcal{I}$

- $\mathcal{I} \models (a, b) : r$ if $(a^\mathcal{I}, b^\mathcal{I}) \in r^\mathcal{I}$
Example

$\mathcal{I} \models \text{laika} : \text{Canine} \ ?$

$\mathcal{I} \models \top \sqsubseteq \text{Canine} \cup \exists \text{owns}. \text{Canine} \ ?$

$\mathcal{I} \models \exists \text{owns}. (\text{Male} \sqcap \text{Canine}) \sqsubseteq \text{Male} \ ?$
Example

\[I \models \text{laika} : \text{Canine} \quad \checkmark \]

\[I \models \top \subseteq \text{Canine} \sqcup \exists \text{owns}.\text{Canine} \]

\[I \models \exists \text{owns}.(\text{Male} \sqcap \text{Canine}) \subseteq \text{Male} \]
Example

\[\Delta^\mathcal{I} \]

\begin{align*}
\text{Canine}^\mathcal{I} & \quad \text{owns}^\mathcal{I} & \quad \text{jane}^\mathcal{I} \\
\text{Dog}^\mathcal{I} & \quad \text{nemo}^\mathcal{I} & \quad \text{emo}^\mathcal{I} \\
\text{milou}^\mathcal{I} & \quad \text{owns}^\mathcal{I} & \quad \text{tintin}^\mathcal{I} \\
\text{laika}^\mathcal{I} & \quad \text{owns}^\mathcal{I} & \\
\end{align*}

- \(\mathcal{I} \models \text{laika} : \text{Canine} \)
- \(\mathcal{I} \models \top \subseteq \text{Canine} \cup \exists \text{owns}.\text{Canine} \)
- \(\mathcal{I} \models \exists \text{owns}.(\text{Male} \cap \text{Canine}) \subseteq \text{Male} \)
Example

\[\Delta^{\mathcal{I}} \]

\begin{align*}
&\text{Canine}^{\mathcal{I}} \\
&\text{Dog}^{\mathcal{I}} \\
&\text{Milou}^{\mathcal{I}} \\
&\text{Laika}^{\mathcal{I}} \\
&\text{Tintin}^{\mathcal{I}} \\
&\text{Emo}^{\mathcal{I}} \\
&\text{Nemo}^{\mathcal{I}} \\
&\text{Owns}^{\mathcal{I}} \\
&\text{Male}^{\mathcal{I}} \\
\end{align*}

\[\mathcal{I} \models \text{Laika : Canine} \quad \checkmark \]

\[\mathcal{I} \models \top \subseteq \text{Canine} \cup \exists \text{Owns}. \text{Canine} \quad \checkmark \]

\[\mathcal{I} \models \exists \text{Owns}. (\text{Male} \cap \text{Canine}) \subseteq \text{Male} \quad \checkmark \]
Satisfiability

- A **knowledge base** is a tuple $\mathcal{K} := \langle T, A \rangle$, for some TBox T and ABox A
- Captures both structural knowledge about the domain and explicit knowledge about individuals

Definition (Satisfaction extended)

- $I \models T$ if $I \models C \sqsubseteq D$ for each $C \sqsubseteq D \in T$
- $I \models A$ if $I \models a : C$ for each $a : C \in A$ and $I \models (a, b) : r$ for each $(a, b) : r \in A$

- If $I \models T \cup A$, we say I is a **model** of $\mathcal{K} := \langle T, A \rangle$
- \mathcal{K} is **consistent** if it has a model
Reasoning

- Each TBox axiom $C \subseteq D$ is either true or false in \mathcal{I}
- Each assertion $a : C$ and $(a, b) : r$ is either true or false in \mathcal{I}
- Each \mathcal{I} is a complete description of what is true and false in \mathcal{I}

But ...

See first, think later, then test. But always see first. Otherwise you will only see what you were expecting – Douglas Adams
Reasoning

- Each TBox axiom \(C \sqsubseteq D \) is either true or false in \(\mathcal{I} \)
- Each assertion \(a : C \) and \((a, b) : r \) is either true or false in \(\mathcal{I} \)
- Each \(\mathcal{I} \) is a complete description of what is true and false in \(\mathcal{I} \)

But ...

- There are infinitely many different interpretations
- The domain of interpretation \(\Delta^\mathcal{I} \) can itself be infinite

See first, think later, then test. But always see first. Otherwise you will only see what you were expecting – Douglas Adams
Reasoning

- **Open World Assumption**
 - “lack of knowledge to the contrary does not imply falsity”
 - reasoning across all interpretations of a knowledge base

Definition (Entailment)

An axiom or assertion \(\alpha \) follows from a knowledge base \(\mathcal{K} \), written \(\mathcal{K} \models \alpha \), if every model of \(\mathcal{K} \) is also a model of \(\alpha \).

- Consistency – does \(\mathcal{K} \) have a model?
- Entailment – does the axiom \(\alpha \) follow from \(\mathcal{K} \)?
- Instance checking – does the assertion \(\alpha \) follow from \(\mathcal{K} \)?
Entailment

Example

What follows from $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle^2$?

$\mathcal{T} = \left\{ \begin{aligned}
\text{EmployedStudent} &\equiv \text{Student} \sqcap \text{Employee}, \\
\text{Student} \sqcap \neg \text{Employee} &\sqsubseteq \neg \exists \text{pays.Tax}, \\
\text{EmployedStudent} \sqcap \neg \text{Parent} &\sqsubseteq \exists \text{pays.Tax}, \\
\text{EmployedStudent} \sqcap \text{Parent} &\sqsubseteq \neg \exists \text{pays.Tax}, \\
\exists \text{worksFor.Company} &\sqsubseteq \text{Employee}
\end{aligned} \right\}$

$\mathcal{A} = \left\{ \begin{aligned}
\text{ibm} &: \text{Company}, \\
\text{mary} &: \text{Parent}, \\
\text{john} &: \text{Student}, \\
(\text{john, ibm}) &: \text{worksFor}
\end{aligned} \right\}$

- $\mathcal{T} \models \text{Student} \sqcap \exists \text{worksFor.Company} \sqsubseteq \text{EmployedStudent}$
- $\mathcal{T} \not\models \text{Employee} \sqsubseteq \exists \text{worksFor.Company}$
- $\mathcal{K} \models \text{john} : \text{EmployedStudent}$
- $\mathcal{K} \not\models \text{mary} : \neg \exists \text{pays.Tax}$

2 Example adapted from ESLLI 2018 tutorial by Ivan Varzinczak
Query Answering

- For which individuals does the query answer α follow from \mathcal{K}?

 $$q(x) := \text{EmployedStudent}(x) \land \neg \text{Parent}(x)$$

- Conjunctive queries

 $$q(x, y) := \text{EmployedStudent}(x) \land \text{worksFor}(x, y) \land \text{Company}(y)$$

 $$q(x) := \exists y (\text{EmployedStudent}(x) \land \text{worksFor}(x, y) \land \text{Company}(y))$$

- First-order queries

 $$q(x, y) := \text{EmployedStudent}(x) \land \text{worksFor}(x, y) \land \text{Company}(y)$$